
ScriptPy

Pyscript

Postscript Graphics with Python

v 0.4

Alexei Gilchrist

Paul Cochrane

2

0: Contents

1 Introduction 1

1.1 Overview . 1

1.2 Conventions and Pitfalls . 1

1.3 Tutorial . 2

2 How Do I ...? 5

2.1 Aligning things . 5

2.1.1 Using attributes . 5

2.1.2 Understanding boundingboxes . 6

2.1.3 Using Align() . 7

2.1.4 Using Distribute() . 7

2.2 Trouble Shooting . 7

2.2.1 LATEXStuff . 7

2.3 Transformations and Things . 7

3 Pyscript Objects 9

3.1 Base Objects . 9

3.1.1 PsObj() . 9

3.1.2 AffineObj() . 10

3.1.3 Area() . 10

3.2 Drawing Objects . 11

3.2.1 Common Attributes . 11

3.2.2 Rectangle() . 11

3.2.3 Circle() . 11

3.2.4 Dot() . 13

3.2.5 Path() . 13

3.3 Text Objects . 13

3.3.1 Text() . 13

3.3.2 TeX() . 14

3.4 Groups . 15

3.4.1 Group() . 15

3.5 Vectors and Matrices . 15

ii CONTENTS

3.6 Other . 15

3.6.1 Color() . 15

3.6.2 Paper() . 16

3.6.3 Epsf() . 17

4 Development 19

A PyScript Plotting Package 21

B PyScript Electronics Object Package 23

B.1 Introduction . 23

B.2 Objects . 23

B.2.1 AND gate . 23

B.2.2 NAND gate . 23

B.2.3 OR gate . 24

B.2.4 NOR gate . 24

B.2.5 XOR gate . 24

B.2.6 NXOR gate . 24

B.2.7 NOT gate . 25

B.2.8 Resistor . 25

B.2.9 Capacitor . 25

1: Introduction

1.1.Overview

Pyscript is a python package for creating high-quality postscript drawings. It began from the
frustration of trying to create some good figures for publication that contained some abritrary
LATEX expressions, and has been largely inspired by mpost. What began as some quick-n-dirty
hacks has evolved into a really useful tool (after several rewrites). Essentially a figure is
scripted using python and some pre-defined objects such as rectangles, lines, text etc. This
approach allows for a precise placement of all the components of a figure.

Some of the key features are

• All scripting is done in python, which is a high-level, easy to learn, well developed
scripting language.

• All the objects can be translated, scaled, rotated, . . . in fact any affine transformation.

• The plain text object is automatically kerned.

• You can place abritrary LATEX expressions on your figures.

• You can create your own objects, and develop a library of figure primitives.

• Output is publication quality.

1.2.Conventions and Pitfalls

Just to be clear from the outset, some conventions follow, and some common pitfalls to be
aware of . . .

• The co-ordinate system is as you learned at school in maths . . . the x-axis extends to
the right, the y-axis extends upwards. I know, this is obvious, but a suprising number
of graphics libraries invert the y-axis.

• Angles are in degrees and proceed clockwise from the top . . . just like your clock. Often,
key points are labeled by the compass points: n, ne, e, se, s, sw, w, nw.

• The default units are postscript points, 1cm = 28.346pp. For a figure, the default can
easily be changed with the command defaults.units=UNITS[’cm’]. All of the examples
in this manual are in cm.

• In python, an integer divided by an integer is truncated to an integer, To avoid this use
floating point numbers, e.g. 2/3 = 0 but 2/3. = 0.6666.

2 Chapter 1: Introduction

• Backslashes in strings have special significance, such as denoting newlines ("\n"). This
can be frustrating for entering LATEX expresions. You can turn off this interpretation
by using raw strings: just prepend an “r” to the string e.g. g=r"α"

1.3.Tutorial

As a tutorial, we’ll take a detailed look at the script that created the following figure:

offline

B

B

D
(

iθ

2α2

)

X Z

|B00〉

|B00〉

|Q〉

In the following script, we’ve interdispersed comments explaining what we’re doing, the full
script is available with the other examples and is called tutorial.py.

First import the pyscript libraries, and we’ll grab some objects from pyscript.lib.quantumcircuits

too. Most scripts would have something like this at the beginning.

from pyscript import *

from pyscript.lib.quantumcircuits import *

The default units are in postscript points. I prefer to use cm so switch the units here. The
default units are stored in defaults.units which is just a number giving giving the multiplying
factor compared to postscript points. UNITS is a dictionary of factors for some common units.

defaults.units=UNITS[’cm’]

There’s a bunch of LATEX macros I use often. Rather than defining them each time they’re
needed, well define them in the tex_head variable in defaults, which defines the start of the
environment where all the LATEX is processed.

defaults.tex_head=r"""

\documentclass{article}

\pagestyle{empty}

\usepackage{amsmath}

\newcommand{\ket}[1]{\mbox{$|#1\rangle$}}

\newcommand{\bra}[1]{\mbox{$\langle #1|$}}

\newcommand{\braket}[2]{\mbox{$\langle #1|#2\rangle$}}

\newcommand{\ketbra}[2]{\mbox{|#1$\rangle\langle #2|$}}

\newcommand{\op}[1]{\mbox{\boldmath $\hat{#1}$}}

\newcommand{\R}[3]{%

\renewcommand{\arraystretch}{.5}

$\begin{array}{@{}c@{}}{#1}\\{#2}\end{array}{#3}$

\renewcommand{\arraystretch}{1}

}

\begin{document}

"""

1.3 Tutorial 3

Now, define the colors of some objects here to make it easy to change them everywhere in the
figure later if we need to. There are a whole variety of ways to specify a color, we’ll use RGB
values here.

blue=Color(.65,.65,1)

green=Color(.65,1,.65)

There’s a component of the figure we’ll use several times, so for convenience, define it here
as a function which returns the object. A separate class would also be possible, but would
involve more work. We could also have created the object and used the copy() method to
make duplicates, but that would be clumsy.

def BellDet(c=P(0,0)):

H=P(0,.8)

W=P(.5,0)

D is a D-shaped path filled in with the blue color we defined earlier.

D=Path(c+H,

C(c+H+W),

c+W,

C(c-H+W),

c-H,bg=blue,

)

Now return everything as a Group, which will then get treated as a unit in the rest of the
figure.

return Group(

Path(c-H,c+H,linewidth=2),

D,

TeX(r’\mathcal{B}’,c=D.c)

)

To create the big gray box, we’ve tweaked the parameters after examining the results so that
it looks nice. The dash specification is straight from postscript.

offline=Rectangle(height=4,width=5.5,e=P(3.5,1.5),

dash=’[3] 0’,bg=Color(.85))

Now render the figure! What about all the other bits of the figure? Well, we’ll render them
on the fly since we don’t need to refer to the objects again. render is a function that can take
a variable number of arguments, we’ll create some of the objects in the actual function call.

Objects are rendered in the order that they appear in the render() call. So, we’ll put on the
big gray box first, this way it’ll appear to be behind everything else.

render(

offline,

TeX(’offline’,nw=offline.nw+P(.1,-.1)),

Now draw the lines, and some dots. A rough sketch on a piece of paper beforehand will really
help in figuring out what the co-ordinates are for what you want to draw. You can always
tweak them later.

Path(P(5,0),P(-.3,0),P(-.6,.5),P(-.3,1),P(2,1)),

Path(P(2,2),P(-.3,2),P(-.6,2.5),P(-.3,3),P(3.7,3)),

Path(P(-1,4),P(3.7,4)),

Dot(P(-.6,.5)),

Dot(P(-.6,2.5)),

4 Chapter 1: Introduction

Now add a double line, notice how the central region of the line in the figure is unbroken?
Can you guess how it was done?

classicalpath(Path(P(2.1,1.5),P(4.5,1.5),P(4.5,0)),

Path(P(3,1.5),P(3,0)),

Path(P(3.8,3.5),P(4.5,3.5),P(4.5,1.5)),

),

Use the function we defined earlier to add those large detectors to the figure.

BellDet(P(2,1.5)),

BellDet(P(3.7,3.5)),

Add some boxed equations to the figure. This object is from the quantumcircuits library, and
will add a box around an abritrary object.

Boxed(TeX(r’$D\left(\frac{i\theta}{2\alpha^2}\right)$’),c=P(1,2),bg=green),

Boxed(TeX(’X’),c=P(3,0),bg=green),

Boxed(TeX(’Z’),c=P(4.5,0),bg=green),

Finally, add some LATEX expressions (notice some of the macros we defined earlier), and
give the filename to write the postscript to. N.B. keywords, such as file=, have to go after
parameters in a function call.

TeX(r’$\ket{B_{00}}$’,e=P(-.7,.5)),

TeX(r’$\ket{B_{00}}$’,e=P(-.7,2.5)),

TeX(r’\ket{Q}’,e=P(-1.1,4)),

file="tutorial.eps",

)

We’re done. Sit back and admire the figure.

2: How Do I ...?

2.1.Aligning things

pyscript has a rich structure for aligning objects. This ranges from objects which have
attributes which specify a particular point such as the nw corner of the object to functions
such as Align() and Distribute() which will align and distribute a group of objects.

2.1.1. Using attributes

Certain objects (mostly those subclassed from Area) have named points on the object that can
be read or set. Area defines the following compass points located on a rectangle: “n”, “ne”,
“e”, “se”, “s”, “sw”, “w”, “nw”. Also the center of the area is given by “c”. Reading one of
these attributes will return the value of that point, and setting one of these attributes will
move the object so that the named point lies on the supplied one. For example, obj1.c=obj2.c
will align the centres of the two objects. The points returned are vectors from the origin and
can be manipulated in the usual ways.

Example

This will align the centre of obj3 so that it lies half way between the
centres of obj1 and obj2: obj3.c=(obj1.c+obj1.c)/2..

The main thing to keep in mind is that the named point is for the objects coordinate system.
If a transformation is applied to the object, it will also be applied to all the named points.

Example

6 Chapter 2: How Do I ...?

As the following example shows, the named point always stays the
same in the objects coordinate system (watch the dot).

r=Rectangle(width=2,height=2)

g=Group()

for a in [0,20,40]:

p=P(a/7.,0)

r2=r.copy(c=p).rotate(a,p)

g.append(r2,Dot(r2.nw))

render(g,file=...)

produces

2.1.2. Understanding boundingboxes

An objects boundingbox is a rectangle in the current coordinate system that completely
contains the object. The bounding box for an object can be obtained with the bbox() method.
The bounding box is calculated after all the co-ordinate transformations are applied to the
objects.

Bounding boxes have the same named point as rectangles, but these are read-only, and you
can’t apply transformations to bounding boxes.

Example

A variation of the previous example, where we’ll put a dot at the nw
corner of the bounding box

r=Rectangle(width=2,height=2)

g=Group()

for a in [0,20,40]:

p=P(a/7.,0)

r2=r.copy(c=p).rotate(a,p)

g.append(r2,Dot(r2.bbox().nw))

render(g,file=...)

produces

2.2 Trouble Shooting 7

2.1.3. Using Align()

2.1.4. Using Distribute()

2.2.Trouble Shooting

2.2.1. LATEXStuff

One of the useful features of PyScript is the ability to use LATEX. The process is kind of
complicated though so things can break. It helps to know how it all works if you’re going to
find some of the subtle bugs, so here’s a synopsis:

1. You create some LATEX with the TeX() object (you are using raw strings arent you?).

2. PyScript writes the text to a temporary file sandwiched between defaults.tex_head and
defaults.tex_tail.

3. defaults.tex_command is excecuted on the file

4. dvips is executed on the resulting DVI file.

5. PyScript reads the BoundingBox comment and throws the rest away!

6. Finally, within render all the TeX() objects are collected together. A temporary file
with all the LATEX is generated with the individual objects delimited by postscript tags
(inserted via specials) and pagebreaks.

7. As before, defaults.tex_command is executed (twice this time) on the file, followed by
dvips.

8. The resulting code is parsed and divided up into sections on fonts and procedures, and
the individual postscript code for each object. These are then used within the final
document.

The reason it’s so complicated is for efficiency — you don’t want all the header and font info
for every single piece of TEX you put on the page.

This is not the way LATEX was designed to be used and it shows — you have to jump
through a number of hoops to get it all to work. The defaults.tex_command should have a
-interaction=batchmode flag or errors won’t get picked up. For the same reason, any output
from dvips is treated as an error, so it needs a -q flag. There are a number of tweaks that
have to be made to the postscript code so that it is viable and the boundingboxes work . . .

Despite all this it works suprisingly well. You can even include figures in the LATEX code and
input other files etc. Take care though, use \input rather than \include as the latter seems
to invoke some weird things in dvips that result in the postscript tags not getting placed in
the file. Also, don’t use a figure or table environment — they’re floats . . . think about it.

Right, that enough of a rant. The useful stuff:

• output from the commands goes to the log file — you did look at it right?

• For each TeX object the temporary file thats created is called temp1.tex. defaults.tex_command

and dvips -E execute on it to produce temp1.eps. All these should be valid files which
you can examine. You can also run the commands by hand to see whats going on.

• The final temp file with all the objects is temp.tex which ends up producing temp.ps

which will have one object per page. Again you can examine these files by hand.

2.3.Transformations and Things

8 Chapter 2: How Do I ...?

3: Pyscript Objects

These are the basic pyscript objects and functions. At the begining of each class there is a
brief description of the structure of the class showing the relevant methods and members. See
also figure 4.1 on page 20 for an indication of how the classes fit together.

3.1.Base Objects

These are classes which add layers of functionality to pyscript objects. Normally you wouldn’t
use these classes directly unless you’re creating new pyscript objects. We’ll decribe them here
because they summarise what you can do with pyscript objects.

3.1.1. PsObj()

class PsObj(object):

def __call__(self,**dict):

Set a whole lot of attributes in one go

def copy(self,**dict):

return a copy of this object

with listed attributes modified

def __str__(self):

return actual postscript string to generate object

def body(self):

subclasses should overide this for generating postscipt code

def bbox(self):

return objects bounding box

Base class of which most (all?) pyscript classes are subclass.

A list of parameters can be set when an object is created with calls like t=Text(’Hello’,font=’Helvetica’)
or by calling the object like a function as in t(sw=P(0,2)). The parameters are also available
singly as attributes: t.sw etc.

Printing an object produces the actual postscript code.

Objects may be copied with the copy() function and new parameters can be passed in as
arguments eg s = t.copy(sw=P(0,0)).

10 Chapter 3: Pyscript Objects

3.1.2. AffineObj()

class AffineObj(PsObj):

o=P(0,0)

T=Matrix(1,0,0,1)

def concat(self,t,p=None):

concat matrix t to tranformation matrix

t: a 2x2 Matrix dectribing Affine transformation

p: the origin for the transformation

return: reference to self

def move(self,*args):

translate object by a certain amount

param args: amount to move by, can be given as

- dx,dy

- P

return: reference to self

def rotate(self,angle,p=None):

rotate object,

the rotation is around p when supplied otherwise

it’s the objects origin

angle: angle in degrees, clockwise

p: point to rotate around (external co-ords)

return: reference to self

def scale(self,sx,sy,p=None):

scale object size (towards objects origin or p)

sx sy: scale factors for each axis

p: point around which to scale

return: reference to self

def itoe(self,p_i):

convert internal to external co-ords

p_i: intrnal co-ordinate

return: external co-ordinate

def etoi(self,p_e):

convert external to internal co-ords

p_e: external co-ordinate

return: internal co-ordinate

A base class for objects that should implement affine transformations (such as scaling, rotating
etc), this should apply to any object that draws on the page.

3.1.3. Area()

class Area(AffineObj):

o=P(0,0)

width=0

height=0

n, ne, e, se, s, sw, w, nw, c ... see description below

A Rectangular area defined by the south-west corner and the width and height. This object
mainly adds the ability to align to named compass points on the circumference see figure
below.

3.2 Drawing Objects 11

(0,0)

n ne

e

sessw

w

nw

c

width

he
ig

ht

These points are always returned in external co-ordinates.

3.2.Drawing Objects

3.2.1. Common Attributes

Most of the objects that actually draw something on the page share a common set of attributes
to set things like the line thickness etc.

• fg: A Color(), the colour for the ink in the foreground. Some objects allow switching
this off with the value None in which case only the fill (if it’s used) will be drawn.

• bg: A Color(), the fill color if the object supports this. A value of None means no fill
(transparent).

• linewidth: The linewidth in pp.

• linecap: How to finish the ends of lines. 0=butt, 1=round, 2=square.

• linejoin: How to treat corners. 0=miter, 1=round, 2=bevel.

• miterlimit: Where to cut off the mitres (if you’re using mitres in linejoins). 1.414
cuts off miters at angles less than 90 degrees, 2.0 cuts off miters at angles less than 60
degrees, 10.0 cuts off miters at angles less than 11 degrees, 1.0 cuts off miters at all
angles, so that bevels are always produced.

• dash: The dash pattern to use for the forground lines. Currently this follows the
postscript syntax. e.g. "[]" is a solid line, "[2 3] 0 " is a dashed line with ink for 2 pp
gap for 3 pp and an initial offset for the ink of 0 pp. At some time in the future there
may be a convenience class to set this.

3.2.2. Rectangle()

(0,0)

n ne

e

sessw

w

nw

c

width

he
ig

ht

3.2.3. Circle()

bg=None

fg=Color(0)

r=1.0

12 Chapter 3: Pyscript Objects

start=0

end=360

linewidth=defaults.linewidth

dash=defaults.dash

n, ne, e, se, s, sw, w, nw, c ... see description below

def locus(self,angle,target=None):

Set or get a point on the locus

@param angle: locus point in degrees

(Degrees clockwise from north)

@param target: target point

@return: target is None: point on circumference at that angle

else: set point to the target, and return reference

to object

Draw a circle. The circle is specified by its position and its radius. You can also specify part
of a circle with the attributes start and end which are in degrees clockwise from the top. As
with the Rectangle there are named points on the enclosing square that corresponds to the
compass points which can be read or set.

(0,0)

n ne

e

sessw

w

nw

c

r

In addition an abtritrary point on the circumference can be read or set by using the locus()

method — with one parameter (the angle on the locus) the locus point is returned; with an
additional target point supplied, the locus point is set to the target point.

Example

c=Circle(r=.5,bg=Color(’dandelion’))

g=Group()

for ii in range(0,360,30):

g.append(

Circle(r=.2,bg=Color(’white’)).locus(180+ii,c.locus(ii))

)

render(c,g,file=...)

Example

3.3 Text Objects 13

g=Group(Rectangle(sw=P(0,0),width=2,height=2),

Circle(r=1,sw=P(0,0)),

Circle(r=sqrt(2)).locus(-135,P(0,0)),

)

g.scale(1.5,.5)

render(g,file=...)

3.2.4. Dot()

class Dot(Circle):

r=.1

bg=Color(0)

fg=None

A simple convenience function to draw a dot at the given location

3.2.5. Path()

An abritrary path (line curve etc).

3.3.Text Objects

3.3.1. Text()

class Text(Area):

A single line text object within an Area object

text=’’

font="Times-Roman"

size=12

fg=Color(0)

bg=None

kerning=1

The Text object allows typesetting a simple string in a single font. The usual postscript
fonts are defined, these are (case insensitive): courier, courier_bold, courier_boldoblique,
courier_oblique, helvetica, helvetica_bold, helvetica_boldoblique, helvetica_oblique, symbol,
times_bold, times_bolditalic, times_italic, times_roman and zapfdingbats.

The text will use kerning automatically, that is, the letter spacing will be adjusted depending
on the pair of letters so that it looks nicer. The kerning can be turned of if necessary, see
example below.

Example

14 Chapter 3: Pyscript Objects

t1=Text(’SWEPT AWAY’,kerning=0,size=20)

t2=Text(’SWEPT AWAY’,kerning=1,size=20,nw=t1.sw)

render(t1,t2,file=...)

SWEPT AWAY
SWEPT AWAY

Since Text is a subclass of Area then the usual compass points (n, ne, etc) are defined and can
be read or set.

3.3.2. TeX()

class TeX(Area):

an TeX expression

text=""

fg=Color(0)

A LATEX object — any LATEXexpression, can be typeset and positioned on the diagram. The
LATEX expression is passed to the latex program followed by dvips, the resulting postscript
is parsed and forms the basis of the object. Obviously this requires working latex and
dvips distributions on your system. We recommend setting up your latex distribution to use
postscript fonts, that way they can be scaled to any size.

One common pitfall is that the backslash (’\’) is used in python strings as an escape character
and so gets interpreted by python before the string gets passed to the latex program. The
easiest work around to this problem is to use python raw-strings — just prepend an “r” to
the string e.g. r"α".

The object inherits from the Area object, and can also be scaled, rotated, etc. as will any of
the other objects.

Example

tex=TeX(r’$|\psi_t\rangle=e^{itH}|\psi_0\rangle$’,w=P(.5,0))

g=Group()

for ii in range(0,360,60):

g.append(tex.copy().rotate(ii,P(0,0)))

render(g,file=...)

|ψt〉 = e−iHt/h̄|ψ0〉

|ψ
t 〉

=

e
−

iH
t/h̄

|ψ
0 〉

|ψ
t〉

=

e
−

iH
t/h̄|ψ

0〉

|ψt〉=e
−iHt/h̄

|ψ0〉

|ψ
t〉

=

e−
iH

t/
h̄
|ψ

0
〉

|ψ
t
〉
=

e
−

iH
t/

h̄ |ψ
0
〉

3.4 Groups 15

3.4.Groups

3.4.1. Group()

class Group(Area):

def __init__(self,*objects,**dict):

def append(self,*objs):

append object(s) to group

def apply(self,**dict):

apply attributes to all objects

def recalc_size(self):

recalculate internal container size based on objects within

def __getitem__(self,i):

def __setitem__(self,i,other):

def __getslice__(self,i,j):

def __setslice__(self,i,j,wert):

This is one of the key classes in PyScript. Group() acts like a python list and groups together
PyScript objects. Objects can be added to the group when you create it, e.g. g=Group(det,b),
or appended afterwards, e.g. g.append(head,tail). You can access the items in the group as
you would a normal python list, e.g. head=g[2].

When an item is added to the group, the groups bounding box is recalculated and this allows
the whole group to be positioned using n, ne etc. If you modify an object after it’s been added
to the group you will have to call the .recalc_size()— if you want the groups bounding box
to reflect it’s contents, you may not want this under certain applications.

Groups()’s can be nested without problem. All the items will be rendered in the order they
where added.

The properties of the groups contents can be set en-masse by using the .apply() method. Ob-
jects that don’t understand a particular property will be skipped. e.g. g.apply(linewidth=2).

3.5.Vectors and Matrices

3.6.Other

3.6.1. Color()

class Color(PsObj)

def __mul__(self,other)

This class represents a postscript color. There are four ways to specify the color distinguished
by the number and type of paprameters that are passed when you create the object.

• Color(C,M,Y,K) - a postscript CMYKColor (Cyan, Magenta, Yellow, blacK)

• Color(R,G,B) - RGBColor (Red, Green, Blue)

16 Chapter 3: Pyscript Objects

• Color(G) - Gray

• Color(’Yellow’) etc

All the numbers above range from 0 to 1. Some of the named colors that are defined are Red,
Green, Blue, Cyan, Magenta, Yellow, Black, White.

Color objects can be multiplied by a numeric factor. The effect is mostly to darken colors
if the factor is less than 1 and to lighten colors if it’s greater, but this depends on how the
colors where specified. eg Color(.2,.6,.6)*.5 = Color(.1,.3,.3)

The colours in the named colour model are shown in figure 3.1. As a historical note, the
color names originated from unixes X11 color names, and were at one point considered as
cadidate named colours for HTML documents, but in the end where never adopted. They
have however, aquired an unofficial permanence.

lightpink
pink

crimson

palevioletred
lavenderblush

hotpink
deeppink

mediumvioletred
orchid
thistle

plum
violet

magenta
fuchsia

darkmagenta
purple

mediumorchid
darkviolet
darkorchid

indigo
blueviolet

mediumpurple
mediumslateblue

darkslateblue
slateblue

ghostwhite
lavender

midnightblue
blue

mediumblue
darkblue

navy
royalblue

cornflowerblue

lightsteelblue

lightslategray
slategray

dodgerblue
aliceblue
steelblue

lightskyblue
skyblue

deepskyblue
lightblue

powderblue
cadetblue

darkturquoise
azure

lightcyan
paleturquoise

aqua
cyan

darkcyan
teal

darkslategray
mediumturquoise

lightseagreen
turquoise

aquamarine
mediumaquamarine
mediumspringgreen

mintcream

springgreen
mediumseagreen

seagreen
honeydew
palegreen
lightgreen

lime

darkseagreen

limegreen
forestgreen

green
darkgreen
lawngreen
chartreuse

greenyellow
darkolivegreen

yellowgreen
olivedrab

ivory
lightyellow

lightgoldenrodyellow
beige

yellow
olive

darkkhaki

palegoldenrod
khaki

lemonchiffon

gold
cornsilk

goldenrod
darkgoldenrod

floralwhite
oldlace
wheat

orange
moccasin

papayawhip
blanchedalmond

navajowhite
tan

antiquewhite
burlywood

darkorange
bisque
linen

peru
peachpuff

sandybrown
chocolate

saddlebrown
seashell
sienna

lightsalmon
orangered

coral
darksalmon

tomato
salmon

mistyrose
snow

rosybrown
lightcoral
indianred

brown
firebrick

red
darkred

maroon
white

whitesmoke

gainsboro
lightgrey

silver

darkgray

gray
dimgray

black

Figure 3.1: Named colors

A final note on the colors — what you get on paper may not reflect what you see on the
screen. The actual color that turns up on the paper is a complicated function of how it was
produced, and depends on the hardware. The fastest and most accurate way to match colors
in a printed document is to print out a color chart on the intended hardware.

3.6.2. Paper()

class Paper(Area):

PAPERSIZES={"a0", ...’’letter’’, ...}

This is a convenience class, just an Area() with predefined size given by the usual paper sizes
such as “a4”, “letter” and “legal” etc. The origin is at the sw corner. It’s useful if you want
an object that will help align things on a printed page. e.g. page=Paper("a4").

3.6 Other 17

3.6.3. Epsf()

class Epsf(Area):

Include an encapsulated postscript file (eps) in the figure. An eps file is a single page postcript
file describing a diagram. There are many programs, such as graphing programs, that will
generate eps files as output. It has to obey certain rules, such as having no page brakes,
and a bounding box. PyScript will parse the file and extract the bounding box and use that
as the basis of the size and placement of the figure (so if it’s wrong don’t blame PyScript).
Epsf() takes a single argument — the path of the eps file. The resulting object can then be
positioned using n,c,ne etc, and of course can be scaled and rotated as desired.

The Eps file can also be scaled to a particular width or height by specifing either the width

or the height attributes when you create the object. The aspect ratio will be preserved when
you do this. If you give both width and height attributes the object will be scaled to those
dimensions without preserving its aspect ratio.

18 Chapter 3: Pyscript Objects

4: Development

The aim of this section is to document some of the internals of pyscript to enable developers
to modify and extend it. It should also help in solving some of the trickier problems.

20 Chapter 4: Development

A
F
M

+
_

_
g

e
ta

tt
r_

_
()

+
_

_
g

e
tit

e
m

_
_

()
+

_
_

in
it_

_
()

+
_

_
re

p
r_

_
()

+
b

b
o

x(
)

+
ch

a
rs

()
+

co
m

m
e

n
ts

()
+

h
a

s_
ch

a
r(

)
+

h
a

s_
ke

rn
p

a
ir
()

+
ke

rn
p

a
ir
s(

)

C
on
ve
rt
A
F
M

+
_

_
in

it_
_

()
+

p
a

rs
e

()
+

p
a

rs
e

a
tt
r(

)
+

p
a

rs
e

ch
a

r(
)

+
p

a
rs

e
co

m
p

o
si

te
()

+
p

a
rs

e
ke

rn
p

a
ir
()

+
w

ri
te

()
+

w
ri
te

2
()

C

+
_

_
in

it_
_

()
+

co
n

tr
o

ls
()

+
co

p
y(

)

M
at
rix

+
_

_
a

d
d

_
_

()
+

_
_

d
iv

_
_

()
+

_
_

g
e

tit
e

m
_

_
()

+
_

_
g

e
ts

lic
e

_
_

()
+

_
_

in
it_

_
()

+
_

_
le

n
_

_
()

+
_

_
m

u
l_

_
()

+
_

_
n

e
g

_
_

()
+

_
_

rm
u

l_
_

()
+

_
_

rs
u

b
_

_
()

+
_

_
se

tit
e

m
_

_
()

+
_

_
se

ts
lic

e
_

_
()

+
_

_
su

b
_

_
()

+
b

o
d

y(
)

+
d

e
t(

)
+

in
ve

rs
e

()

de
fa
ul
ts

+
te

x_
h

e
a

d
+

te
x_

ta
il

+
te

x_
co

m
m

a
n

d
+

u
n

its
+

lin
e

w
id

th
+

lin
e

ca
p

+
lin

e
jo

in
+

m
itr

e
lim

it
+

d
a

sh

G
ro
up

+
_

_
g

e
tit

e
m

_
_

()
+

_
_

g
e

ts
lic

e
_

_
()

+
_

_
in

it_
_

()
+

_
_

se
tit

e
m

_
_

()
+

_
_

se
ts

lic
e

_
_

()
+

a
p

p
e

n
d

()
+

a
p

p
ly

(*
*d

ic
t)

+
b

b
o

x(
)

+
b

o
d

y(
)

A
re
a

+
n

+
n

e
+

e
+

se
+

s
+

sw
+

w
+

n
w

+
c

+
b

b
o

x(
)

E
ps
f

+
_

_
in

it_
_

()
+

b
o

d
y(

)

T
ex
t

+
_

_
in

it_
_

()
+

_
ty

p
e

se
t(

)
+

b
o

d
y(

)

A
ffi
ne
O
bj

+
o

+
T

+
co

n
ca

t(
)

+
e

to
i(
)

+
ito

e
()

+
m

o
ve

()
+

p
o

st
b

o
d

y(
)

+
p

re
b

o
d

y(
)

+
ro

ta
te

()
+

sc
a

le
()

T
eX

+
_

_
in

it_
_

()
+

b
o

d
y(

)

P
ap
er

+
_

_
in

it_
_

()

R
ec
ta
ng
le

+
b

o
d

y(
)

P
at
h

+
_

_
in

it_
_

()
+

_
g

e
t_

e
n

d
()

+
_

g
e

t_
st

a
rt

()
+

b
o

d
y(

)
+

cl
o

se
d

()
+

e
xt

e
n

t(
)

C
irc
le

+
n

+
n

e
+

e
+

se
+

s
+

sw
+

w
+

n
w

+
c

+
b

o
d

y(
)

+
lo

cu
s(

)
+

b
b

o
x(

)

D
ot

+
_

_
in

it_
_

()
+

b
b

o
x(

)

P
+

re
la

tiv
e

+
_

_
a

d
d

_
_

()
+

_
_

d
iv

_
_

()
+

_
_

g
e

tit
e

m
_

_
()

+
_

_
in

it_
_

()
+

_
_

le
n

_
_

()
+

_
_

m
u

l_
_

()
+

_
_

n
e

g
_

_
()

+
_

_
rm

u
l_

_
()

+
_

_
rs

u
b

_
_

()
+

_
_

se
tit

e
m

_
_

()
+

_
_

su
b

_
_

()
+

b
o

d
y(

)
+

cr
o

ss
()

+
le

n
g

th
()

B
bo
x

+
n

+
n

e
+

e
+

se
+

s
+

sw
+

w
+

n
w

+
c

+
is

_
se

t(
)

+
u

n
io

n
()

C
ol
or

+
C

O
L

O
R

S
+

_
_

in
it_

_
()

+
_

_
m

u
l_

_
()

+
_

_
st

r_
_

()

P
sO
bj

+
_

_
ca

ll_
_

()
+

_
_

in
it_

_
()

+
_

_
re

p
r_

_
()

+
_

_
st

r_
_

()
+

b
b

o
x(

)
+

b
o

d
y(

)
+

co
p

y(
)

+
p

o
st

b
o

d
y(

)
+

p
re

b
o

d
y(

)

~
/.
p

ys
cr

ip
t/
d

e
fa

u
lts

?

re
n

d
e

r(
)

L
a

T
e

X
d

vi
p

s

e
ve

ry
th

in
g

g
e

n
e

ra
tin

g
p

o
st

sc
ri
p

t

ca
n

 a
p

p
ly

a
ff
in

e
 t
ra

n

T
ab
le
?

V
B
ox
?

H
B
ox
?

Figure 4.1: Class structure of pyscript

A: PyScript Plotting Package

22 Chapter A: PyScript Plotting Package

B: PyScript Electronics Object Package

B.1.Introduction

Thanks to Adrian Jonstone’s lcircuit macros from CTAN for the ideas and names.

B.2.Objects

B.2.1. AND gate

def AndGate(

sw=P(0,0),

direction=’e’,

height=2.0,

width=3.0,

pinLength=0.5,

label=None,

labelPinIn1=None,

labelPinIn2=None,

labelPinOut=None

):

B.2.2. NAND gate

def NandGate(

sw=P(0,0),

direction=’e’,

height=2.0,

width=3.0,

pinLength=0.5,

label=None,

labelPinIn1=None,

labelPinIn2=None,

labelPinOut=None,

):

24 Chapter B: PyScript Electronics Object Package

B.2.3. OR gate

def OrGate(

sw=P(0,0),

direction=’e’,

height=2.0,

width=3.0,

pinLength=0.5,

label=None,

labelPinIn1=None,

labelPinIn2=None,

labelPinOut=None):

B.2.4. NOR gate

def NorGate(

sw=P(0,0),

direction=’e’,

height=2.0,

width=3.0,

pinLength=0.5,

label=None,

labelPinIn1=None,

labelPinIn2=None,

labelPinOut=None):

B.2.5. XOR gate

def XorGate(

sw=P(0,0),

direction=’e’,

height=2.0,

width=3.0,

pinLength=0.5,

label=None,

labelPinIn1=None,

labelPinIn2=None,

labelPinOut=None):

B.2.6. NXOR gate

def NxorGate(

sw=P(0,0),

B.2 Objects 25

direction=’e’,

height=2.0,

width=3.0,

pinLength=0.5,

label=None,

labelPinIn1=None,

labelPinIn2=None,

labelPinOut=None):

B.2.7. NOT gate

def NotGate(

sw=P(0,0),

direction=’e’,

height=2.0,

width=3.0,

pinLength=0.5,

label=None,

labelPinIn1=None,

labelPinIn2=None,

labelPinOut=None,

):

B.2.8. Resistor

def Resistor(

w=P(0,0),

direction=’ew’,

resLength=3.0,

resWidth=1.0,

pinLength=0.5,

label=None,

labelPinIn=None,

labelPinOut=None,

):

B.2.9. Capacitor

def Capacitor(

w=P(0,0),

direction=’ew’,

capHeight=1.0,

capSep=0.25,

pinLength=0.5,

label=None,

labelPinIn=None,

labelPinOut=None,

):

26 Chapter B: PyScript Electronics Object Package

	Introduction
	Overview
	Conventions and Pitfalls
	Tutorial

	How Do I ...?
	Aligning things
	Using attributes
	Understanding boundingboxes
	Using Align()
	Using Distribute()

	Trouble Shooting
	LaTeXStuff

	Transformations and Things

	Pyscript Objects
	Base Objects
	PsObj()
	AffineObj()
	Area()

	Drawing Objects
	Common Attributes
	Rectangle()
	Circle()
	Dot()
	Path()

	Text Objects
	Text()
	TeX()

	Groups
	Group()

	Vectors and Matrices
	Other
	Color()
	Paper()
	Epsf()

	Development
	PyScript Plotting Package
	PyScript Electronics Object Package
	Introduction
	Objects
	AND gate
	NAND gate
	OR gate
	NOR gate
	XOR gate
	NXOR gate
	NOT gate
	Resistor
	Capacitor

